Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Int J Mol Sci ; 24(1)2022 Dec 27.
Article in English | MEDLINE | ID: covidwho-2241185

ABSTRACT

Transmissible gastroenteritis virus (TGEV) is a coronavirus causing diarrhea with high incidence in swine herds. Its persistent infection might lead to epithelial-mesenchymal transition (EMT) of swine intestinal epithelial cells, followed by subsequent infections of other pathogens. Enterococcus faecalis (E. faecalis) is a member of the enteric microorganisms and an opportunistic pathogen. There is no report of secondary E. faecalis infection to TGEV, even though they both target to the intestinal tracts. To investigate the interactions between TGEV and E. faecalis, we set up an in vitro infection model by the swine IPEC-J2 cells. Dynamic changes of cell traits, including EMT and cell motility, were evaluated through qPCR, Western blot, electronic microscopy, scratch test, Transwell migration test and invasion test, respectively. The adhesion and invasion tests of E. faecalis were taken to verify the impact of the preceding TGEV infection. The cell morphology and molecular marker evaluation results showed that the TGEV persistent infection induced EMT on IPEC-J2 cells; increased cellular motility and invasion potential were also observed. Spontaneously, the expression levels of fibronectin (FN) and the membrane protein integrin-α5, which are dominant bacterial receptors on IPEC-J2 cells, were upgraded. It indicated that the bacteria E. faecalis adhered to IPEC-J2 cells through the FN receptor, and then invaded the cells by binding with the integrin-α5, suggesting that both molecules were critical for the adhesion and invasion of E. faecalis to IPEC-J2 cells. Additionally, it appeared that E. faecalis alone might trigger certain EMT phenomena, implying a vicious circle might occur. Generally, bacterial and viral co-infections are frustrating yet common in both human and veterinary medicines, and our observations on enteric TGEV and E. faecalis interactions, especially the diversity of bacterial invasion strategies, might provide new insights into the mechanisms of E. faecalis pathogenicity.


Subject(s)
Bacterial Infections , Transmissible gastroenteritis virus , Animals , Humans , Swine , Enterococcus faecalis , Persistent Infection , Intestines , Epithelial Cells/microbiology , Integrins
2.
Int J Mol Sci ; 22(3)2021 Jan 29.
Article in English | MEDLINE | ID: covidwho-1055071

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently a global public health emergency. Periodontitis, the most prevalent disease that leads to tooth loss, is caused by infection by periodontopathic bacteria. Periodontitis is also a risk factor for pneumonia and the exacerbation of chronic obstructive pulmonary disease, presumably because of the aspiration of saliva contaminated with periodontopathic bacteria into the lower respiratory tract. Patients with these diseases have increased rates of COVID-19 aggravation and mortality. Because periodontopathic bacteria have been isolated from the bronchoalveolar lavage fluid of patients with COVID-19, periodontitis may be a risk factor for COVID-19 aggravation. However, the molecular links between periodontitis and COVID-19 have not been clarified. In this study, we found that the culture supernatant of the periodontopathic bacterium Fusobacterium nucleatum (CSF) upregulated the SARS-CoV-2 receptor angiotensin-converting enzyme 2 in A549 alveolar epithelial cells. In addition, CSF induced interleukin (IL)-6 and IL-8 production by both A549 and primary alveolar epithelial cells. CSF also strongly induced IL-6 and IL-8 expression by BEAS-2B bronchial epithelial cells and Detroit 562 pharyngeal epithelial cells. These results suggest that when patients with mild COVID-19 frequently aspirate periodontopathic bacteria, SARS-CoV-2 infection is promoted, and inflammation in the lower respiratory tract may become severe in the presence of viral pneumonia.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Culture Media, Conditioned/chemistry , Cytokines/metabolism , Fusobacterium nucleatum/metabolism , Angiotensin-Converting Enzyme 2/genetics , COVID-19/pathology , COVID-19/virology , Cell Line , Culture Media, Conditioned/pharmacology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Humans , Interleukin-6/metabolism , Interleukin-8/metabolism , SARS-CoV-2/isolation & purification , Up-Regulation/drug effects
3.
Comp Immunol Microbiol Infect Dis ; 74: 101581, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-926806

ABSTRACT

In this study, primary and immortalized bovine intestinal epithelial cells (BIECs) were characterized for the expression of surface carbohydrate moieties. Primary BIEC-c4 cells showed staining greater than 90 % for 16 lectins but less than 50 % staining for four lectins. Immortalized BIECs showed significantly different lectin binding profile for few lectins compared to BIEC-c4 cells. BIEC-c4 cells were studied for infectivity to E. coli, Salmonella enterica, bovine rotavirus, bovine coronavirus, and bovine viral diarrhea virus. Bovine strain E. coli B41 adhered to BIEC-c4 cells and Salmonella strains S. Dublin and S. Mbandaka showed strong cell invasion. BIEC-c4 cells were susceptible to bovine rotavirus. LPS stimulation upregulated IL-10, IL-8, and IL-6 expression and Poly I:C upregulated TLR 8 and TLR 9 expression. This study provides important knowledge on the glycoconjugate expression profile of primary and immortalized BIECs and infectivity and immune responses of primary BIECs to bacterial and viral pathogens or ligands.


Subject(s)
Cell Line , Epithelial Cells/immunology , Epithelial Cells/microbiology , Lectins/metabolism , Toll-Like Receptors/immunology , Animals , Cattle , Coronavirus, Bovine , Diarrhea Viruses, Bovine Viral , Escherichia coli , Immunity , Interleukins/immunology , Rotavirus , Salmonella enterica
SELECTION OF CITATIONS
SEARCH DETAIL